
Global Script Program Calculus

Jonathan Cast

February 19, 2019

Contents

1 Introduction and General Remarks 3
1.1 Excursus on the Term ‘Programming Language’ 3
1.2 Syntax . 5
1.3 Type System . 5
1.4 Models and Denotations . 6
1.5 Equational Theory . 7
1.6 Operational Model . 7
1.7 Implementations . 7

2 Object Expressions 9
2.1 Variables . 9

2.1.1 Variables Without implicit Declarations 9
2.1.2 Variables With implicit Declarations 10
2.1.3 Explicit Type Applications 10
2.1.4 Explicit Applications . 10
2.1.5 Variables Used as Expressions 10

2.2 Functions . 10
2.2.1 Function Literals . 10
2.2.2 Applications . 11

2.3 for Expressions . 11
2.4 Branch Expressions . 11

2.4.1 Cases . 12

3 Patterns 13
3.1 Concatenating Sequences of Patterns 13
3.2 Classes of Patterns . 13
3.3 Specific patterns . 14
3.4 Reasoning at the Source Level . 15

4 Generators 16

5 Types 17

6 Modules 18

1

7 Overloading 19

8 IDMC 20

9 Programs 22

10 Documents 24

11 Standard Library 25

12 Examples 26
12.1 Fibionacci Numbers . 26
12.2 Prime Numbers . 26
12.3 gstype Hello, World . 26
12.4 gsdraw Hello, World . 26
12.5 Dance Hello, World . 26
12.6 IBIO echo . 27
12.7 IBIO cat . 27
12.8 IBIO wc . 27

2

Chapter 1

Introduction and General
Remarks

This document specifies the Global Script Program Calculus, a purely-functional,
completely machine-independent program calculus designed to support the Global
Script Type-Setting System.

1.1 Excursus on the Term ‘Programming Lan-
guage’

The term ‘programming language’ has an odd, and in the opinion of the de-
veloper of this system deleterious, definition in normal usage. ‘Programming
language’ clearly derives from the verb ‘program’, (rather than the noun); it
clearly means ‘language for the act of programming’. But the verb ‘program’ is
a transitive verb: ‘program the i686 processor’, ‘program the fuel injection sys-
tem’, ‘program the accounting system’, etc. To program a machine is to make it
do what the programmer wishes; the act of programming makes no sense except
in reference to a machine. So ‘machine-independent programming language’ is,
properly speaking, a nonsensical concept.

Originally, this term simply meant ‘programming language which targets
multiple machines’ (or, rather, usually, ‘family of programming languages in-
dexed by multiple machines’), which really means (if it means anything) ‘pro-
gramming language which targets a family of machines sharing similar capabili-
ties’. Typically this class of machines encompases most of the machines typically
encountered by programmers (but not most programmable machines in use!),1

so the myth has grown up that typical languages ‘support all computers’; and
even that languages lacking I/O facilities are not Turing-complete!2

1Most software is actually embedded software, which lacks access to the familiar keyboard
/ screen / mouse facilities assumed by the typical definition of ‘general-purpose’ language.

2The Intercal manual (implicitly) makes this claim.

3

Meanwhile, ‘programming language’ has come to mean something like ‘algo-
rithmic language’, i.e., methods for algorithmic computation, variable naming,
function definition, program partitioning, etc. I/O ‘isn’t part of the language’
or ‘shouldn’t be part of the language’ (!).3 The problem with this position4 is
that it justifies the neglect of I/O that programming language designers have
traditionally lavished on it. Almost every language has genuinely wretched I/O
facilities, precisely because of the second-class status assigned to I/O by the
modern concept of ‘programming language’. Global Script thus includes I/O ‘in
the language’, not only because that is the only way to give a denotation for
I/O, but because I/O deserves the same careful design as any other aspect of
the language.

The Global Script Program (not programming!) Calculus is a general syntax
for writing programs, together with rules for manipulating them — consisting of
a static semantics (type system), denotational semantics,5 operational seman-
tics (only for expression evaluation), and formal semantics (equational theory).
The Global Script Program Calculus provides an ‘algorithmic language’ in its
expression syntax, data types, and operational semantics; it also provides a
module system, including support for abstract data types and for encapsulat-
ing business logic, allowing for extensions, libraries, and allowing the large-scale
structure of a program to be expressed within the language. It thus provides
everything a programming language needs, except the environment-specific fea-
tures. In that sense, it is a genuinely environment-independent language. But
not a programming language, because you can’t program anything with it!

However, the Global Script Program Calculus can easily be extended with
operations for programming a specific machine. To allow libraries to be uni-
versal, we use the classic pure-functional approach of adding a new type for
programs in each environment, with operations that construct / return such
programs, including so-called combinators that take parts of programs and com-
bine them into larger programs. Then, the type system distinguishes between
different environments, allowing libraries to be used cross-environment, but not
allowing subprograms for one environment to be invoked incorrectly within an-
other environment which doesn’t provide the operations they need.

The type of programs for each environment, together with its operations,
is called a ‘programming language’ in Global Script, and, in general, the term
‘language’ is used freely for the API for any specific area.

Currently, the major programming languages provided include:

• Global Script Log — a logical markup language;

• Global Script Set — a page description language;

• Global Script Type — ditto, but for Unix terminals;

3Thus excluding denotational semantics from ‘the language’. . . .
4Beyond the fact that you can’t interpret I/O operations in an arbitrary model of a language

that lacks them!
5Meaningful meaning. . .

4

• IBIO — a concurrent stream I/O language, suitable for writing Unix filters
(and, although not designed for them, compilers);

• Cord — a relational database language;

• Dance — an FRP GUI language; and

• Guisen — a procedural GUI language.

1.2 Syntax

This document contains no formal syntax for the language; instead, the intention
is that the mapping from the abstract syntax given here back to concrete syntax
be simple enough to not need a repetitive specification.

Global Script has a handful of special symbols: , ; . and delimiters such as
() [] { } ⟨ ⟩ ⟪ ⟫; otherwise, most non-whitespace symbols are treated as being
part of identifiers (or keywords).

An identifier consists of a sequence of one or more components separated by
. characters (with no intervening whitespace); the three types of components
are

• alphanumeric components, which consist of a lower-case letter followed by
0 or more alphanumeric letters;

• numeric components, which consist of a sequence of 1 or more decimal
digits (two numeric components with the same value, e.g. 01 and 1, are
considered identical); and

• symbolic components, which consist of a sequence of 1 or more symbols,
other than , ; . or a delimiter.

A symbolic component may only be the final component in an identifier.

1.3 Type System

Global Script has a standard natural deduction-based type system, based on
judgments of the form

Γ ⊢ conclusion

The context Γ maps several classes of variables (type variables, object variables,
views, etcw.) to various sorts of meta-data (kinds, types, implicit arguments,
macro properties, etc.). Nevertheless, the context will generally be treated as a
single object, except in the denotational semantics, where it will be split into a
kind context ∆ and a type context Γ .

5

1.4 Models and Denotations

Note: ‘semantics’ means ‘meaning’; specifically, the kind of detailed meaning
that might be found in a language specification. ‘Denotation’ means ‘meaning’;
specifically, the kind of formal meaning that might be found in a language
specification. So ‘denotational semantics’ is redundant. End note.

A model of Global Script is a directed-complete partial order-enriched cate-
gory C with:

• Finite products indexed by sets of Global Script identifiers (note that this
implies in particular the existence of a terminal object ⋆);

• Finite coproducts indexed by sets of Global Script identifiers (note that
this implies in particular the existence of an initial object ε);

• Exponentials;

• An existential quantifier, which is a functor ∃ ∶ Cκ → C, which is the left
adjoint of the constant functor K ∶ C → C

κ, for κ at least the denotations
of the kind environments as defined below; and

• A universal quantifier, which is a functor ∀ ∶ C
κ
→ C which is the right

adjoint of of the constant functor K ∶ C → C
κ, for κ at least the denotations

of the kind environments as defined below;

together with a designated lifting monad, which is a monad ⌊—⌋ on C together
with a natural transformation � ∶ K⋆ → ⌊—⌋ so that �α ○ ⋆β is the least homo-
morphism ∶ β → ⌊α⌋ for all objects α, β.

Note: we need a couple of other things:

• A ‘strength’ ∶ ∃(Kα × F) → α × ∃F ;

• A way to ‘lift’ ∃ and ∀ to functors with more than one argument (elimi-
nating only the last one).

These seem like they should be definable in any category, though. TODO: Will
need to confirm / deny that.

For the purpose of the denotational semantics, contexts will be divided into
two pieces: a kind environment ∆ and a type environment Γ. The kind envi-
ronment ∆ can be thought of as a mapping from type variables to kinds; the
denotation of a kind is a category, and the denotation of a type environment ∆,
written Denv∆w, is

∏

t∈Dom∆

Kv∆(t)w

The denotation of the type environment Γ, which will be written Denvλ∆.Γw,
will be a functor F ∶Denv∆w→ C.

6

1.5 Equational Theory

The equational theory of Global Script, like the type system, consists of judg-
ments of the form

Γ ⊢ P (1.1)

where, however, Γ is a sequence of type assignments and equational propositions
and P is an equational proposition. If you like, you can read this as ‘P is
deducible from Γ ’.

An equational proposition is formed from the propositional connective ∧,
universal quantifiers ∀ (over Global Script type assignments, so ∀

′x ∶∶ τ where
x is a Global Script variable and τ its type), and seven forms of atoms:

• Equations of the form e0 = e1, between two expressions of the same type;

• Pattern match success assertions of the form p ∝ e, read ‘p matches e’;

• Pattern match failure assertions of the form p ∝ e ↓, read ‘p fails to match
e’;

• Pattern match divergence assertions of the form p ∝ e ↑, read ‘the match
of p against e diverges’;

• Generator success assertions of the form g , read ‘g succeeds’;

• Generator failure assertions of the form g ↓, read ‘g fails’; and

• Generator divergence assertions of the form g ↑, read ‘g diverges’.

There is a technical ambiguity wether the propositions p ∝ e, p ∝ e ↓, and
p ∝ e ↑ are about the pattern p and expression e or the generator p ∝ e, but
since the meaning is the same in either case the ambiguity does not matter, and
will be clarified in those cases where which is meant is not immediate.

1.6 Operational Model

1.7 Implementations

An implementation of a Global Script program is a program or machine that
stores the program internally. On request, it will evaluate that program to
WHNF and, if successful, reports the value; if the value is a function it will
further permit Global Script expressions of the correct type to be supplied as
arguments, and will calculate and report their values. If the value is a data
value, of sum or product type, it will allow the components to be evaluated in
the same way.

Note that an implementation is necessarily interactive and works with a
client; implementations on general-purpose computers will generally be libraries
rather than complete programs. Nothing in this chapter is intended to disallow

7

the creation of interpreters that take programs, evaluate them to normal form,
and print the results; however, such a program, because it attaches additional
semantics beyond that of the pure calculus, is properly an implementation of a
language based on the calculus and not of the Global Script program calculus
itself. Similar considerations apply to an implementation that assigns semantics
to Global Script expressions to encode I/O, database access, web servers, GUIs,
or type-setting and allow those to be programmed in Global Script.

A correct implementation of the Global Script program calculus is an imple-
mentation that, given a program or component thereof, exhibits the following
behavior:

• Correctly reports that the expression has a WHNF if it has one, and pro-
vides correct access to its components or gives the value if it is a primitive;

• Correctly reports that the expression has no WHNF if it lacks one; or

• Runs forever if the expression has no WHNF.

Note that it is impossible to realize a correct implementation of the Global
Script program calculus as a physical object, or to implement one on a general-
purpose computer. We thus say that Global Script is un-implementable. Any
two expressions of the same type that lack a WHNF are equivalent according to
the calculus; however, two such expressions may exhibit different behavior when
run by such an implementation, if it is able to determine that the one expression
lacks a WHNF but is unable to make that determination for the other.

A partially correct implementation of the Global Script program calculus is
an implementation that, given a program or component thereof, exhibits the
following behavior:

• Correctly reports that the expression has a WHNF if it has one, and
provides partially correct access to its components or gives the value if it
is a primitive;

• Correctly reports that the expression has no WHNF if it lacks one;

• Runs forever if the expression has no WHNF; or

• Reports that it is unable to find a WHNF for the given expression.

Note that two expressions that are equivalent according to the calculus may
exhibit different behavior when run by such an implementation, even if they
have a WHNF, because the implementation may be able to find a WHNF for
one program but unable to do so for the other.

8

Chapter 2

Object Expressions

The judgment form for an expression e in context Γ is

Γ ⊢ e ∶∶ τ (2.1)

for some type Γ ⊢ τ ∶∶ κ.
The denotation of an expression will be a natural transformation Ev∆,Γ ⊢

e ∶∶ τw ∶Denv∆ ⊢ Γ contextw→ Tv∆ ⊢ τ ∶∶ κw.

2.1 Variables

The judgment form for a variable v in context Γ is

Γ ⊢ v τ0,i ∶∶ κi
n
i=0 ai ∶∶ τ1,i

m
i=0 ∶∶ τ, (2.2)

where

• τ0,i ∶∶ κi
n
i=0 is a sequence of implicit type arguments and their kinds,

• ai ∶∶ τ1,i
m
i=0 is a sequence of implicit value arguments and their types, and

• τ is the (monomorphic) type of the variable term.

The meta-variable v can stand for a simple identifier (this case will be written
x , xi , etc.), or for an application (see below).

A variable has no denotation, but see section 2.1.5 below.

2.1.1 Variables Without implicit Declarations

The derivation rule for simple identifiers without implicit declarations is

′x ∶∶ ∀
′αi ∶∶ κi .

n

i=0 τ1[αi
n
i=0] ∈ Γ implicit ′x /∈ Γ Γ ⊢ τ0,i ∶∶ κi

n

i=0

Γ ⊢ x τi ∶∶ κi
n
i=0 ∶∶ τ1[τ0,i

n
i=0]

9

2.1.2 Variables With implicit Declarations

The derivation rule for simple identifiers with implicit declarations is

′x ∶∶ ∀
′αi ∶∶ κi .

n

i=0 τ1,i[αj
n
j=0] →

m

i=0
τ2[αi

n
i=0] ∈ Γ implicit ′x = ei

m
i=0 ∈ Γ Γ ⊢ τ0,i ∶∶ κi

n

i=0

Γ ⊢ x τ0,i ∶∶ κi
n
i=0 ei ∶∶ τ1,i[τ0,j

n
j=0]

m

i=0
∶∶ τ2[τ0,i

n
i=0]

2.1.3 Explicit Type Applications

Explicit type arguments only serve as documentation.

Γ ⊢ v τ0,0 ∶∶ κ0, τ0,i ∶∶ κi
n
i=1 ei ∶∶ τ1,i

m
i=0 ∶∶ τ

Γ ⊢ v (type τ0,0) τ0,i ∶∶ κi
n
i=1 ej ∶∶ τ1,i

m
i=0 ∶∶ τ

2.1.4 Explicit Applications

Explicit expression applications replace the implicit value arguments, negating
them and removing them from the expression.

Γ ⊢ v τ0,i ∶∶ κi
n−1
i=0 e0 ∶∶ τ1,0, ei ∶∶ τ1,i

m−1
i=1 ∶∶ τ Γ ⊢ e ∶∶ τ1,0

Γ ⊢ v e τ0,i ∶∶ κi
n−1
i=0 ei ∶∶ τ1,i

m−1
i=1 ∶∶ τ

2.1.5 Variables Used as Expressions

If the implicit arguments to a variable all type-check, the variable can be used
as an expression:

Γ ⊢ v τi ∶∶ κi ei ∶∶ τ1,i
m−1
i=0 ∶∶ τ Γ ⊢ ei ∶∶ τ1,i

m−1

i=0

Γ ⊢ v ∶∶ τ

2.2 Functions

2.2.1 Function Literals

Lambda terms have the rule:1

Γ ⊢ p ∶∶ τ1 ⊳ Γ′ Γ,Γ′,⊢ e ∶∶ τ2
Γ ⊢ λp.e ∶∶ τ1 → τ2

The pattern p must be a lax or strict (not monoidal) pattern; see Section 3.2,
Classes of Patterns. BUG: λ takes multiple patterns (0 or more). End BUG.

1See Chapter 3, Patterns

10

2.2.2 Applications

Applications have the rule:

Γ ⊢ e1 ∶∶ τ1 → τ2 Γ ⊢ e2 ∶∶ τ1
Γ ⊢ e1 e2 ∶∶ τ2

2.3 for Expressions

for expressions are used to make local definitions within an expression. The
syntax is for ⟨generators⟩. ⟨body expression⟩. The generators in a for are non-
recursive, but cannot shadow variables defined in the same for.

In the simplest case, the generators in a for are all let and (non-monoidal)
match generators.

Γ ⊢ gi ⊳ Γ ′ Γ ,Γ ′,⊢ e ∶∶ τ

Γ ⊢ (for gi . e) ∶∶ τ

for can also be used to name intermediate values inside a monad. E.g.
for ′x ← e0. e1. The type rule for this is

Γ ⊢module monad .c m Γ ⊢ gi ⊳m Γ ′ Γ ,Γ ′,⊢ e ∶∶ m τ

Γ ⊢ for gi . e ∶∶ m τ

As might be expected, the monad structure to use in de-sugaring this syntax
can be over-ridden:

Γ ⊢ mon ∶∶ monad .t m Γ ⊢ gi ⊳m Γ ′ Γ ,Γ ′,⊢ e ∶∶ m τ

Γ ⊢ for @mon (gi) e ∶∶ m τ

The sequence of generators inside the () in a for can either be a single
generator or a sequence of 0 or more generators terminated by semi-colons.
In the special case of a single rec generator, the syntax for (rec(gi)) can be
abreviated to for rec (gi).

2.4 Branch Expressions

An analyze expression, Syntactically, analyze expri case pji . bodyj , takes a se-
quence of scrutinee expressions and matches them against the patterns in the
cases, top-to-bottom and left-to-right. If matching a scrutinee against any pat-
tern diverges or no case matches evaluation diverges; otherwise the analyze
expression evaluates to the body of the first matching case. Note: if a case
matches and matching the scrutinees against the patterns in a previous case
diverges, evaluation diverges. If a case matches and matching the scrutinees
against a subsequent case diverges, the evaluation proceeds with the body of
the matching case.

This syntax has a ‘dangling else’ problem when a case ends with an analyze
expression; this is resolved as usual by associating each case to the nearest
preceding analyze expression. This resolution can be over-ridden by putting
parentheses around the inner analyze expression or its enclosing case.

11

2.4.1 Cases

The judgment form for case terms is:

Γ ; ⊢ case pi . e ∶∶ τi → τ

Single cases type thus:

Γ ⊢ τ ∶∶ ∗ Γ ⊢ e ∶∶ τ
Γ ⊢ case. e ∶∶ → τ

Γ ⊢ τ ∶∶ ∗ Γ ⊢ p0 ∶∶ τ0 ⊳ Γ′ Γ,Γ′,⊢ case pi. e ∶∶ τi → τ

Γ ⊢ case p0, pi, . e ∶∶ τ0, τi,→ τ

NB: p0, pi should define disjoint sets of variables. This has implications. The
principle is — hrm. So we have a can-be-bound-by set for a pattern — in a
context — and then an is-bound-by function for sequences/sets of patterns.
Usually these are the same. However, certain patterns do not bind variables
that can be bound by other patterns (whether they are or not). But that all
goes in the Patterns chapter (Chapter 3).

12

Chapter 3

Patterns

The judgment form for patterns is

Γ ⊢ pi ∶∶ τi ⊳ Γ′ (3.1)

3.1 Concatenating Sequences of Patterns

Γ ⊢ pi ∶∶ τi ⊳ Γ′1 Γ ⊢ pj ∶∶ τj ⊳ Γ′2
Γ ⊢ pi ∶∶ τi, pj ∶∶ τj ,⊳ Γ′1,Γ

′

2,

(i ∈ [0, n), j ∈ [n,n + m)). The bound variables of the patterns must all be
distinct. TODO: need a way to handle module patterns module ′m, for which
the bound variables are selected to be distinct from any other patterns in the
same sequence. The rule is basically: calculate the set of variables which could
be bound by any given pattern. Then each module ′m pattern brings into scope
those variables which could be bound by it, and which cannot be bound by any
other pattern. This only applies to module patterns with no export list, or
whose export list contain .. . See Chapter 6, Modules. End TODO.

3.2 Classes of Patterns

• Lax patterns are precisely these:

– Pattern variables ′x ;

– Wildcard patterns ;

– Module patterns where:

∗ there is no export list, e.g. module ′m,

∗ there is a simple export list, e.g. module ′m.(x , y , z ,),

13

∗ there is a complex export list, e.g. module ′m.
⎛

⎝

x = p0,
y = p1,
z = p2,

⎞

⎠

, where

all of the patterns given for the members are themselves lax;

– Lazy patterns ∼p; and

– Parallel patterns ∥p.

• Strict patterns are precisely those patterns of the form !p.

• Monoidal patterns are precisely those patterns that are neither lax nor
strict.

3.3 Specific patterns

Pattern variables Pattern variables have the syntactic form ′x , the ASCII
apostrophe followed by a variable name. Pattern variables where the variable is
an infix operator need to be enclosed in parentheses, e.g., (

′
+)

Γ ⊢ τ ∶∶ ∗
Γ ⊢ ′x ∶∶ τ ⊳ x ∶∶ τ

Wildcard Patterns

Γ ⊢ τ ∶∶ ∗
Γ ⊢ ∶∶ τ ⊳

Views The typing judgment for views has the form Γ ⊢ view v ∶∶ τi; τ , for
i ∈ [0, n). This means:

• v is a view,

• v has arrity n,

• v’s arguments have types τi, respectively, and

• v’s result has type τ .

Note that, if v is both a view and a function, it need not have the same type in
both cases. Nor, if it does have the same type, need its definition as a view and
as a function have any specific relation. Nevertheless giving them the same type
and relating the definitions in some (documented) way is strongly recommended.
Global Script does not draw a distinction between constructors and views.

Γ ⊢ view v ∶∶ τi; τ Γ ⊢ pi ∶∶ τi ⊳ Γ′

Γ ⊢ v pi ∶∶ τ ⊳ Γ′

TODO: How do you declare views? How do views and constructors interract,
exactly? End TODO.

TODO: Existential types. End TODO.
Language TODO: Expression arguments to views (e.g., n +m patterns). End

TODO.

14

3.4 Reasoning at the Source Level

Source-level reasoning about programs uses three predicates:

• p ∝ e ↑, read “matching pattern p against expression e diverges”.

• p ∝ e ↓, read “matching pattern p against expression e fails”.

• p ∝ e, read “matching pattern p against expression e succeeds”.

Note that, for a given pattern p and expression e, precisely one of these predi-
cates will hold.

If p ∝ e, the syntax Pvp ∝ ew will be used to denote the value environment
induced by the pattern match; Pvp ∝ ewe1 will be used to denote e1 with the
values bound by p:

EvPvp ∝ ewe1wη = Eve1w{η;Pvp ∝ ew}

If p ∝ e ↑ or p ∝ e ↓, Pvp ∝ ew and Pvp ∝ ewe1 will be undefined.
We have a few basic cases:

′x ∝ e

For a basic view pattern v pi , when matching against an expression e, use a
pattern matching algorithm as follows:

• First consider the expression ′d = match v bool .false (λ ′xi .bool .true) e.

– If d = �, v pi ∝ e ↑.

– If d = bool .false, v pi ∝ e ↓.

Otherwise, d = bool .true.

• Second, if d = bool .true, let t0 = match v error (λ ′xi .⟪ xi , ⟫) e. Let xi = #i t0
be the components of t0.

– If, for any ′k ∈ [0, n), ∀ ′i ∈ [0, k). pi ∝ xi and pk ∝ xk ↑, v pi ∝ e ↑.

– If, for any ′k ∈ [0, n), ∀ ′i ∈ [0, k). pi ∝ xi and pk ∝ xk ↓, v pi ∝ e ↓.

– Otherwise, for all ′i ∈ [0, n), pi ∝ xi . In this case, v pi ∝ e and

Pvv pi ∝ ew is the concatenation of Pvpi ∝ xiw.

15

Chapter 4

Generators

The judgment form for generators is:

Γ ⊢ g ⊳ Γ ′

g can be a single generator, or a sequence of (semicolon-terminated) generators.
This is read “In type environment Γ , the generator(s) g is (are) well-typed and
induce(s) the type environment Γ ′.

Monoidal generators can fail at run time, which is indicated by using a
judgment of the form

Γ ⊢ g ⊳
? Γ ′

Monadic generators run in a particular monad, which is indicated by using
a judgment of the form

Γ ⊢ g ⊳m Γ ′

And, finally, there are monadic monoidal generators:

Γ ⊢ g ⊳
?
m Γ ′

Some simple generators are:

Γ ⊢ p ∶∶ τ ⊳ Γ ′ Γ ⊢ e ∶∶ τ

Γ ⊢ p ∝ e ⊳ Γ ′

Γ ⊢ p ∶∶ τ ⊳? Γ ′ Γ ⊢ e ∶∶ τ

Γ ⊢ p ∝ e ⊳
? Γ ′

16

Chapter 5

Types

17

Chapter 6

Modules

18

Chapter 7

Overloading

19

Chapter 8

IDMC

IDMC is more complicated than other aspects of the language, because each
QLO can define its own syntax and type system for that syntax.

So the judgement form for QLO bits is:

Γ ⊢ ⟨text⟩ ∶∶qlo τ

⟨text⟩ is a bit of marked-up text; qlo is a QLO.
The master inference rule for QLOs then is:

Γ ⊢ ⟨text⟩ ∶∶qlo τ

Γ ⊢ qlo{⟨text⟩} ∶∶ τ

The curly braces {} can be replaced with any delimiters you want (only in this
construct).

Expression interpolations:

Γ ⊢ e ∶∶ τ
Γ ⊢ §(e) ∶∶qlo τ

Text interpolations:

Γ ⊢ ⟨text⟩ ∶∶qlo τ

Γ ⊢ §{⟨text⟩} ∶∶qlo τ

Variable/macro interpolations Macro interpolations have the form

§x@(type τ0) . . .@(type τn−1)@arg0 . . .@argm−1argm . . .argm+n−1

where each arg , whether optional or required, has the form {⟨text⟩} or (exp).
The judgment form for a macro interpolation is

Γ ⊢ v ∶∶ τi ∶∶ κi ; aj ∶∶ τj ; qlok ; τ

where each qlok is either a QLO name or . The empty sequence at the end of
the sequence qlok is equivalent to an infinite sequence of s.

If Γ contains no macro declaration for x :

20

Γ ⊢ x ∶∶ τi ∶∶ κi ; aj ∶∶ τj ; τ Γ ⊢ τi ∶∶ κi

Γ ⊢ §x ∶∶qlo τi ∶∶ κi ; aj ∶∶ τj ; τ

Otherwise:

macro x qlok ∈ Γ Γ ⊢ x ∶∶ τi ∶∶ κi ; aj ∶∶ τj ; τ Γ ⊢ τi ∶∶ κi

Γ ⊢ §x ∶∶qlo τi ∶∶ κi ; aj ∶∶ τj ; qlok ; τ

21

Chapter 9

Programs

The judgment form for whole programs is

⊢ ⟨gi ; d⟩ ∶∶ ⟨Γ ; τ⟩

The type environment must be empty because whole programs include the entire
library and so can have no free variables.

A program consists of a sequence of generators and a §defndocument; ide-
ally, Global Script implementations should assemble programs from separately
maintained components, including the §defnstandard library (see Chapter 11).1

A program’s value is the value of its document.
TODO: The standard library and the standard libraries of languages like

IBIO and CORD are quite magic in bringing things into scope there’s no way
to define in the language. End TODO.

The generators in a program (at the top level) must be:

• Match generators p ∝ e where p is lax;

• Let generators ′f pi = e;

• Type signatures x ∶∶ σ; and

• Recursive groups rec (gi) where all the gi are otherwise legal at the top
level.

Implementations may and are likely to further restrict accepted top-level
generators; they must support these cases:

• Match generators p ∝ e defining variables in a single module. (When
defining multiple variables, the best way to ensure this is to use a generator
of the form module ′m.(⟨export list⟩) ∝ e).

• Functions defined by a single let equation ′f pi = e. Note that using monoidal
patterns in such an equation must be legal, but is sub-optimal program-
ming practice as it must be an error for any pattern in the head to fail.

1So including multiple components in the program isn’t really optional.

22

The inference rule from programs is

⊢ gi ⊳ Γ Γ ⊢ d ∶∶ τ

⊢ ⟨gi ; d⟩ ∶∶ ⟨Γ ; τ⟩

23

Chapter 10

Documents

Γ ⊢ e ∶∶ τ
Γ ⊢ e ∶∶ τ

Γ ,Γ ′
⊢ gi ⊳ Γ ′ Γ ,Γ ′

⊢ e ∶∶ τ

Γ ⊢ e (where gi) ∶∶ τ

The parentheses around the where clause can be omitted when there is only
one generator, in which case that generator must not have a trailing ;, as usual.
The standard limits on the generators legal in a where clause apply

TODO: Have we said what the ‘standard limits’ on where clauses are yet?
End TODO.

A §defndocument is an expression together with an optional where clause.
The document e (where gi) is equivalent to the expression for rec (gi) e, as
might be expected. (Except that more generators are legal in a for than in a
where.)

24

Chapter 11

Standard Library

25

Chapter 12

Examples

12.1 Fibionacci Numbers

′fibs ∝ 0 ∶ 1 ∶ map2 @by .zip (+) fibs (drop 1 fibs);

12.2 Prime Numbers

′primes = w 2 (repeat true) (where
′w !′n (false ∶

′bs) ∶−w (n + 1) bs;
′w !′p (true ∶

′bs) ∶− p ∶ w (p + 1) (set (chunksof p ○ elems ○ last) false bs);
);

12.3 gstype Hello, World

qq{Hello, world!/n}

12.4 gsdraw Hello, World

text str{Hello, world!}

12.5 Dance Hello, World

text str{Hello, world!}

26

12.6 IBIO echo

for ′as ← getM env .args. send $ concat (intersperse qq{ } as) <> qq{/n}

12.7 IBIO cat

for ′as ← getM env .args. analyze as.
case nil. cat
(case . foreachM $ λ ′a.
for ′eif ← file.open o/r/ $ file.name.in a. analyze eif .

case left ′e. abend e
case right ′if . cat << if

)

where
′cat = for ′s ← receive (many symbol). send s

12.8 IBIO wc

′wc = for ′ls ← receive (many line). unit !(foldl .! accum init ls) (where
′init ∝ ⟨

′lines ∝ 0;
′words ∝ 0;
′runes ∝ 0;

⟩;
′accum ′as (

′l ∶∶ vector .t rune.t) = ⟨

!′lines ∝ as #lines + 1;
!′words ∝ as #words + (l =∼ split m//s+/) #length;
!′runes ∝ as #runes + l #length;

⟩;
);

27

